Approximation Algorithms for Optimal Decision Trees and Adaptive TSP Problems
نویسندگان
چکیده
We consider the problem of constructing optimal decision trees: given a collection of tests which can disambiguate between a set of m possible diseases, each test having a cost, and the a-priori likelihood of the patient having any particular disease, what is a good adaptive strategy to perform these tests to minimize the expected cost to identify the disease? We settle the approximability of this problem by giving a tight O(logm)-approximation algorithm. The optimal decision tree problem was known to be Ω(logm)-hard to approximate, and previously O(logm)-approximations were known only under either uniform costs or uniform probabilities. We also consider a more substantial generalization, the Adaptive TSP problem. Given an underlying metric space, a random subset S of cities is drawn from a known distribution, but S is initially unknown to us—we get information about whether any city is in S only when we visit the city in question. What is a good adaptive way of visiting all the cities in the random subset S while minimizing the expected distance traveled? For this adaptive TSP problem, we give the first polylogarithmic approximation, and show that this algorithm is best possible unless we can improve the approximation guarantees for the well-known group Steiner tree problem. We also give an approximation algorithm with the same guarantee for the adaptive traveling repairman problem.
منابع مشابه
K-delivery Traveling Salesman Problem on Tree Networks
In this paper we study the k-delivery traveling salesman problem (TSP) on trees, a variant of the non-preemptive capacitated vehicle routing problem with pickups and deliveries. We are given n pickup locations and n delivery locations on trees, with exactly one item at each pickup location. The k-delivery TSP is to find a minimum length tour by a vehicle of finite capacity k to pick up and deli...
متن کاملDeveloping Self-adaptive Melody Search Algorithm for Optimal Operation of Multi-reservoir Systems
Operation of multi-reservoir systems is known as complicated and often large-scale optimization problems. The problems, because of broad search space, nonlinear relationships, correlation of several variables, as well as problem uncertainty, are difficult requiring powerful algorithms with specific capabilities to be solved. In the present study a Self-adaptive version of Melody Search algorith...
متن کاملA New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining
Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...
متن کاملParallel Generation of t-ary Trees
A parallel algorithm for generating t-ary tree sequences in reverse B-order is presented. The algorithm generates t-ary trees by 0-1 sequences, and each 0-1 sequences is generated in constant average time O(1). The algorithm is executed on a CREW SM SIMD model, and is adaptive and cost-optimal. Prior to the discussion of the parallel algorithm a new sequential generation with O(1) average time ...
متن کاملSolving Traveling Salesman Problems via Artificial Intelligent Search Techniques
The traveling salesman problem (TSP) is one of the most intensively studied problems in computational mathematics and combinatorial optimization. It is also considered as the class of the NPcomplete combinatorial optimization problems. By literatures, many algorithms and approaches have been launched to solve such the TSP. However, no current algorithms that can provide the exactly optimal solu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010